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This project presents a comprehensive investigation into Spectre attacks on x86-based processors,
focusing initially on both in-order and out-of-order processors and their susceptibility to specula-
tive execution vulnerabilities. The study employs gem5 v23.0 and Spectre V1, which was compiled
on an Ubuntu 16.04 LTS Docker shell with gcc 4.8.5. Initial observations highlight the inherent
resistance of in-order processors, leading to a focus on only out-of-order processors. Methodological
refinements were also built upon the base experiment of running Spectre. These refinements in-
cluded incorporating extended training periods and exploring the impact of branch predictor state
space on Spectre susceptibility. Results confirmed negative correlations between the effectiveness
of Spectre and the presence of statistical correctors, loop predictors, a smaller state space, and a
less number of training iterations of the branch predictor. The introduction of an extended training
period revealed the inherent property of every branch predictor in an out-of-order processor to be
vulnerable to Spectre. Therefore, our results help to design the characteristics of a Spectre-resistant
branch predictor, proposing features such as statistical correctors, loop predictors, a larger state
space, and the use of perceptions. These features aim to prolong the training period and mitigate
biased branches, thus reducing the leakage of sensitive information. In conclusion, our findings
contribute valuable insights into processor vulnerabilities, offering practical considerations for en-
hancing Spectre resistance. The presented methodology and results lay the groundwork for future
research in developing secure branch predictors and mitigating the impact of speculative execution
attacks on modern processors.

Note: the artifacts for our project can be found here.

I. INTRODUCTION

In the ever-evolving landscape of computer security,
vulnerabilities stemming from the exploitation of hard-
ware components pose significant challenges to maintain-
ing the integrity of sensitive data. One such class of se-
curity vulnerabilities, known as Spectre attacks, exploits
speculative execution mechanisms in modern processors
to gain unauthorized access to confidential information.

Speculative execution, a performance optimization
technique employed by contemporary processors, allows
the execution of instructions that are predicted to be
needed in advance. While speculative execution improves
system performance, it introduces a potential avenue for
attackers to breach security measures by executing in-
structions that would not occur during normal program
execution. The Spectre attack capitalizes on this vulner-
ability by manipulating the CPU’s speculative execution
process to gain access to the victim’s memory and regis-
ters, ultimately disclosing sensitive data.

This project aims to investigate the behavior of Spectre
on various branch predictors available within the gem5
computer architecture simulator. The branch predictors
in gem5, such as Tournament, TAGE, Local, Loop, and
Bimodal, play a crucial role in guiding speculative execu-
tion (by predicting the future direction of branches) and,
therefore, present an ideal environment to test how their
“smartness” affects Spectre attacks.

We will also provide an overview of the types of Spectre
attacks and their underlying principles. Additionally, we
will introduce the gem5 simulator and its relevant CPU
models and branch predictors. We would like to explore

how various factors within these branch predictors af-
fect the efficacy of Spectre. By exploring these aspects,
we seek to contribute to the understanding of Spectre
attacks and the development of their mitigations, ulti-
mately strengthening the security of digital systems in an
era where data protection is of paramount importance.

II. BACKGROUND

A. What are Spectre attacks?

Spectre attacks are a class of security vulnerabilities
that exploit speculative execution to gain access to sen-
sitive data.

Speculative execution is a technique used by modern
processors to improve performance. It works by execut-
ing instructions that are predicted to be needed, even if
they may not be. This can lead to performance improve-
ments, but it can also be exploited by attackers to gain
access to sensitive data.

Spectre attacks work by tricking the CPU into specu-
latively executing instructions that would not occur dur-
ing correct program execution. These speculative in-
structions can access the victim’s memory and registers,
and can perform operations with measurable side effects.
The attacker can then measure these side effects to learn
about the victim’s sensitive data.

https://github.com/kunpai/spectre-gem5-v23.0
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B. Types of Spectre Attacks

There are several different types of Spectre attacks,
but they can all be classified into two main categories[8]:

• Exploiting Conditional Branches: These attacks
exploit the CPU’s branch predictor to mispredict
the direction of a branch, causing the CPU to spec-
ulatively execute code that would not have been
executed otherwise. This incorrect speculative exe-
cution allows an attacker to read secret information
stored in the program’s address space.

Kocher, et. al. found the following:[8]

If we consider the following piece of code:

if (x < array1_size) {
y = array2[array1[x] * 4096];

}

Let’s assume that the variable x contains data con-
trolled by an attacker. The code includes an if
statement to check if the value of x falls within
a valid range before accessing array1. The purpose
of this if statement is to ensure that the memory
access to array1 is valid. However, an attacker can
bypass this security measure and potentially read
confidential data from the process’s memory.

To achieve this, the attacker follows a two-phase
approach. In the first phase, they intentionally
provide valid inputs to the code, which trains the
branch predictor to anticipate that the if statement
will evaluate to true. Then, in the second phase,
during the actual exploit, the attacker provides a
value of x that falls outside the allowed bounds of
array1. Instead of waiting for the branch result to
be determined, the CPU makes a speculative guess
that the bounds check will pass and begins execut-
ing instructions that involve accessing array2 with
a calculation dependent on the malicious x. This
access loads data into the CPU cache at an address
related to array1[x] based on the attacker’s manip-
ulated x value, designed to access different cache
lines to avoid prefetching.

Once the bounds check is finally determined, the
CPU realizes its mistake and corrects its microar-
chitectural state. However, the changes made to
the cache state are not reverted. This allows the at-
tacker to inspect the cache contents and potentially
discover the value of a byte that was retrieved dur-
ing the out-of-bounds read from the victim’s mem-
ory, which might contain sensitive information.

• Exploiting Indirect Branches: Kocher, et. al. also
found a way to exploit speculative prediction in
indirect branches to gain access to private infor-
mation[8]. In this variant of the Spectre attack,
the attacker utilizes a technique inspired by return-
oriented programming (ROP) but with a different

approach. Instead of exploiting a vulnerability in
the victim’s code, the attacker selects a gadget from
the victim’s address space and manipulates the vic-
tim into speculatively executing this gadget. This
attack doesn’t rely on a specific weakness in the
victim’s code but rather targets the Branch Tar-
get Buffer (BTB) to mispredict an indirect branch
instruction, leading to the speculative execution of
the chosen gadget. Just like in previous attacks, the
CPU’s nominal state is eventually corrected, but
the effects on the cache are not, allowing the gad-
get to leak sensitive information through a cache
side channel. The attacker demonstrates this em-
pirically and emphasizes that careful gadget selec-
tion enables the reading of arbitrary memory from
the victim.

To mislead the BTB, the attacker first identifies the
virtual address of the gadget in the victim’s address
space and then performs indirect branches to this
address. This training process is conducted from
the attacker’s address space. The content at the
gadget’s address in the attacker’s address space is
not crucial; what matters is that the virtual ad-
dresses used during training match or alias those
in the victim’s address space. Even if there is no
code mapped to the virtual address of the gadget
in the attacker’s address space, the attack can still
be successful as long as the attacker handles excep-
tions appropriately.

• Other Variants: Other variants of Spectre use other
methodologies like mistraining return instructions,
timing variations, and contention on arithmetic
units to leak out information.[8]

Thus, these attacks take advantage of the speculative
execution to access and leak information from memory
or other sensitive locations that should not be accessible
under normal program execution.

C. Spectre code

We will be using the following code for the Spectre
attack[1]. Our compiler is gcc 4.8.5 on Ubuntu 16.04
LTS. As outlined by Lowe-Power[9], a lower compiler ver-
sion makes a run of Spectre on gem5 much faster. Since
we could not replicate the Ubuntu version on which the
original version of Spectre was compiled (because it went
out of support), we used Ubuntu 16.04, which has long-
term support.

This version of the code also, by default, tries to train
the branch predictor to predict in one direction 1000
times.

The code works in the following way:
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1. Victim Code

The victim code contains a function called
victim function, which serves as the target for
the Spectre attack. It manipulates arrays and aims to
leak sensitive data from memory:

• array1 size is set to 16, and array1 is an array
of 16 bytes.

• array2 is a larger array used for cache-based timing
attacks.

• secret is a string containing the sensitive data that
the attacker attempts to reveal.

• The victim function takes an index x as input,
and if x is less than array1 size, it performs a
bitwise AND between the current value of temp and
the element of array2 indexed by the product of
array1[x] and 512, and the result is stored back
in the temp variable. This operation is designed to
leak information.

2. Analysis Code

The analysis code is responsible for exploiting the vic-
tim function and deducing the value of secret. It em-
ploys timing-based attacks to determine whether a spe-
cific element of array2 was cached, which is dependent
on the value of x:

• It includes a function called readMemoryByte that
repetitively calls the victim function with vary-
ing x values and observes the time required for
memory accesses. Based on the timing information,
it infers which elements of array2 were loaded into
the cache, and consequently, it can make an edu-
cated guess about the value of x and, by extension,
the value of secret.

• The code incorporates cache line flushing tech-
niques (using the clflush instruction) to control
cache behavior and measure access times. It em-
ploys different techniques depending on the avail-
ability of instructions and features on the target
platform.

The main function has a training period of 1000 iter-
ations, and its goal is to train the branch predictor to
predict in a certain direction, before calling the victim
function and having that direction predicted for the vic-
tim function as well.

Therefore, this code employs the first variant of Spec-
tre.

D. What is gem5?

gem5 is an open-source community-supported com-
puter architecture simulator. Its ecosystem consists of
a simulator core and parametrized models for a wide
number of components from out-of-order processors, to
DRAM, to network devices. The gem5 project consists
of the gem5 simulator, documentation, and common re-
sources that enable computer architecture research. [10]
Although gem5 boasts a wide range of CPU models,

the models of interest for this project are:

• MinorCPU: MinorCPU is an in-order processor
model that offers a fixed pipeline structure but
allows for the configuration of its data structures
and execution behavior. It encompasses essential
pipeline stages like Fetch, Decode, and Execute,
making it a valuable tool for studying architectural
aspects.[3]

• O3CPU: In contrast to MinorCPU, O3CPU is
an out-of-order model that features a more com-
plex pipeline with stages including Fetch, Decode,
Rename, Issue/Execute/Writeback, and Commit.
This model is well-suited for in-depth analysis of
speculative execution and its interactions with dif-
ferent branch predictors.[3]

By utilizing these CPU models within gem5, we gain
the capacity to explore and assess various architectural
scenarios, making a more holistic examination of Spectre
attacks and the impact of branch predictors on them.

E. Branch Predictors in gem5

Looking at the reference code of gem5’s Branch Pre-
dictors, we can say that gem5 has the following Branch
Predictors[4]:

• Tournament Branch Predictor: The tournament
predictor as described was originally designed to
use one of each category of branch predictors: lo-
cal and global. The history of each branch is both
independent (local) and on a global level.[11]

• TAGE Branch Predictor: This branch predictor re-
lies on a default tagless predictor backed with a plu-
rality of tagged predictor components, indexed us-
ing different history lengths. These history lengths
form a geometric series. The prediction is provided
either by a tag match on a tagged predictor compo-
nent or by the default predictor. In case of multiple
hits, the prediction is provided by the tag-matching
table with the longest history.[14]

• Local Branch Predictor: The local branch predic-
tor considers the history of each branch indepen-
dently and takes advantage of repetitive patterns.
Since the histories of branches are independent, it
is referred to as local branch prediction.[11]
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• Bimodal Branch Predictor: This predictor has a
table containing n entries and a 2-bit saturating
counter per entry is indexed via the lower-order bits
of the PC. The 2 bits are then used as a simple state
machine. At each update, the 2-bit counter will be
incremented or decremented according to the true
result of the branch.[12]

• Multiperspective Perceptron Predictor: This pre-
dictor is a hashed perceptron predictor that uses
both hashed global path and pattern histories. It
also uses a variety of other kinds of features, like an
inner-most loop iteration counter and a ”modulo-
based history”, based on various organizations of
branch histories. To access the prediction tables, a
feature’s hash value is calculated by incorporating
recent historical data and hashing it alongside the
branch’s address to be predicted. This hash value
is then adjusted modulo the size of the prediction
table. The weight associated with this particular
index in the table is retrieved, and all these weights
for various features are combined and subjected to
a threshold to determine whether the prediction is
for the branch to be taken or not.[5]

We will run the Spectre binary on each of these branch
predictors in gem5. We plan on having separate configu-
rations for each branch predictor.

F. Additional Branch Predictor Components

Certain components are added onto a base branch pre-
dictor in gem5. These components are:

• Loop Predictor: This predictor involves the use of
explicit loop detection for improving the prediction
accuracy of loop branches and post-loop branches.
Loop detection is implemented by storing informa-
tion about dynamic instruction sequences that are
terminated at backward branches. Additional logic
checks for repeating instruction sequences are also
implemented. This helps to detect loops.[7]

• Statistical Corrector Predictor: A downside with
branch predictors is that sometimes they fail at pre-
dicting statistically biased branches e.g. branches
that have only a small bias towards a direction, but
are not strongly correlated with the global history
path. The Statistical Corrector predictor to better
predict this class of statistically biased branches.
The predictor aims at detecting the unlikely pre-
dictions and to revert them.[13]

These additional features are added onto the TAGE
predictor in gem5, making the LTAGE (loop predictor)
and the TAGE SC L (both loop predictor and statistical
corrector predictor) predictors. They are also added to
the Multiperspective Perceptron TAGE BP by default.

III. METHODOLOGY

A. Configurations

The baseline models used will be an x86-based in-order
processor and an out-of-order processor.
We will pair each processor up with one of the afore-

mentioned branch predictors and measure some stats
from its run that would help us determine how effective
Spectre was on it.
Overall, Table I. provides the configurations in more

detail:

1. Statistics of Interest

Spectre has already been reproduced in gem5 on the
ARM microarchiteture[2], and using the syscall emula-
tion mode in the x86 ISA[9]. As part of their method-
ology, Ayoub and Maurice found that some of the best
stats to measure from gem5 that show proof of a more
effective Spectre attack are:

• Seconds: The lower the seconds, the faster a Spec-
tre attack took.

• Number of Mispredicted Branches: Mispredicted
branches are indicative of the smartness of the
branch predictor. Lower mispredicts imply that a
branch predictor can gauge the pattern across the
program more efficiently, making it quicker to train.

We will measure these stats as a metric for a run of
the Spectre attack[1] with different branch predictors on
the x86 ISA, with the method laid out by Lowe-Power in
his blog post[9]. We will also measure the percentage of
the secret string that was revealed through the output of
the Spectre program.

2. A Successful Run

To know if a run of Spectre was successful, we will look
at the terminal output for leaked information, which is
part of the Spectre program we are using. On gem5, a
successful run looks like FIGURE 1.

IV. RESULTS

A. MinorCPU

The MinorCPU does not show a successful Spectre at-
tack for any branch predictor. The expected secret string
is “The Magic Words are Squeamish Ossifrage.”, but any
output of the attack when run with a branch predictor
on the MinorCPU looks something like the following:
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TABLE I. List of Configurations

X86O3CPU X86MinorCPU
Tournament BP Tournament BP
BiMode BP BiMode BP
TAGE BP TAGE BP
Multiperspective Perceptron BP (8 kB History size) Multiperspective Perceptron BP (8 kB History size)
Multiperspective Perceptron BP (64 kB History size) Multiperspective Perceptron BP (64 kB History size)
Local BP Local BP
LTAGE (with a loop predictor) LTAGE (with a loop predictor)
TAGE SC L BP (8 kB History size, with loop predictor
and statistical corrector)

TAGE SC L BP (8 kB History size, with loop predictor
and statistical corrector)

TAGE SC L BP (64 kB History size, with loop predictor
and statistical corrector)

TAGE SC L BP (64 kB History size, with loop predictor
and statistical corrector)

Multiperspective Perceptron TAGE BP (8 kB History
size)

Multiperspective Perceptron TAGE BP (8 kB History
size)

Multiperspective Perceptron TAGE BP (64 kB History
size)

Multiperspective Perceptron TAGE BP (64 kB History
size)

FIG. 1. Terminal output of a successful Spectre attack in
gem5.

Reading at malicious_x = 0xffffffffffdd6d48
... Success: 0xFF=’?’ score=0
...

While the output says that reading the secret string
is a success, it is not, since the character read is from
address 0xFF and does not contain any character of the
secret string either (i.e. 0% of the secret string revealed).

So, we can say that the Spectre attack fails in an in-
order processor in gem5.

B. O3CPU

For the O3CPU, we noticed a higher success rate in the
Spectre attack. All branch predictors were able to reveal
at least a part of the secret string, which was of length
40. Table II. provides the exact values for this success
rate.

‘

TABLE II. Success Rate of Branch Predictors in the O3CPU
with Training Period of 1000 iterations

Branch Predictor % of Secret String Revealed
TAGE BP 100%
Tournament BP 100%
Local BP 100%
BiMode BP 100%
LTAGE BP 100%
TAGE SC L BP (8 kB) 72.50%
TAGE SC L BP (64 kB) 45%
Multiperspective Percep-
tron BP (8 kB)

100%

Multiperspective Percep-
tron BP (64 kB)

42.50%

Multiperspective Percep-
tron TAGE BP (8 kB)

55%

Multiperspective Percep-
tron TAGE BP (64 kB)

57.50%

V. DISCUSSION

A. Impact of Dataflow

From our results, we can discern that Spectre does not
work in an in-order processor in gem5.

In an in-order processor, instructions are executed se-
quentially in the order they appear in the program. This
means that instructions are processed one by one without
reordering or speculative execution. Spectre attacks, on
the other hand, rely on the processor’s speculative predic-
tions, which rely heavily on branch prediction. The pre-
dicted branch outcome executes instructions along that
path before the actual outcome is confirmed.

Therefore, given no branch predictor could result in a
successful Spectre attack, we can say in-order processors
are inherently less susceptible to Spectre attacks than
out-of-order processors.
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B. Impact of Additional Components

Through our investigations, we find that adding a loop
predictor or a statistical corrector makes a branch pre-
dictor more resistant to a Spectre attack, and both make
the branch predictor even more resistant.

For example, the TAGE branch predictor was the most
susceptible to the Spectre attack. From the results, we
noticed that adding a loop predictor (LTAGE BP) slowed
down the Spectre attack tremendously. However, the se-
cret string was still revealed. But, adding a statistical
corrector to the LTAGE branch predictor further slows
down the Spectre attack. On top of slowing it down, in
both variants of the TAGE SC L BP, the secret string is
not fully revealed.

Even in the Multiperspective Perceptron, the vari-
ants that add a loop predictor and a statistical corrector
(i.e., the Multiperspective Perceptron TAGE BP vari-
ants) slow down the time taken for a Spectre attack, and
do not reveal the entire secret string.

This is in line with the functions of these two compo-
nents.

Loop predictors are designed to identify loops in the
code and predict the outcomes of branch instructions
within those loops more accurately. Spectre attacks of-
ten rely on exploiting the speculative execution of branch
instructions. By enhancing the prediction of branch in-
structions within loops, it becomes more difficult for at-
tackers to steer the speculative execution in a way that
leaks sensitive data.

Branch predictors are also designed to make predic-
tions based on historical behavior and patterns but, some
branches have a bias towards a particular direction, mak-
ing them challenging to predict accurately. Spectre at-
tacks often target such branches. The statistical cor-
rector is designed to detect when the branch predictor’s
predictions are statistically biased or unlikely, and it can
help revert these unlikely predictions. This correction
mechanism can prevent the branch predictor from spec-
ulatively executing instructions that could be exploited
by a Spectre attack.

Therefore, by adding these two components to the
branch predictor, it becomes more robust against attacks
that rely on exploiting statistically biased branches, since
they take more iterations to be trained to mispredict.
This makes it more difficult for an attacker to leverage
these branches to leak sensitive information.

C. Impact of “Smartness” of BP

Our results indicate that the “smartness” of the branch
predictor, i.e., less training to get more accurate predic-
tions, is a major factor in how susceptible it is to Spectre.
The trend observed is that the “smarter” the branch pre-
dictor is, the more susceptible it is to Spectre.

If we were to look at the total branch mispredictions
per branch predictor in gem5 in Fig. 2 and the time it

FIG. 2. Branch mispredictions per branch predictor type of
a base Spectre attack in gem5.

FIG. 3. Seconds taken to complete a base Spectre attack per
branch predictor type in gem5.

took for the Spectre attack to complete, we can see that
the “smartest” branch predictor, the TAGE, with the
least mispredictions, was the most susceptible to Spectre,
using time as a metric for efficacy. It only took 0.008
seconds for the entire secret string to be revealed.

Conversely, if we look at the Multiperspective Percep-
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tron 64 kB branch predictor, the Spectre attack took the
longest (3.02 seconds) and the branch predictor had the
most mispredicts too. Even the secret string was not
fully revealed.

It makes sense why TAGE would be more susceptible
than the MPP branch predictor.

TAGE predictors are known for their rapid training
and accuracy. They use a combination of several ta-
bles to track the history of recent branch outcomes and
make predictions. These tables allow TAGE predictors
to adapt quickly to the behavior of the program because
they can learn from the recent history of branches. TAGE
predictors have also implemented parallelism to do this
even faster, meaning that they are more likely to under-
stand the trend of the branch the quickest. Thus, they
can be easily exploited by attackers.[14]

Multiperspective Perceptron, on the other hand, is a
more complex branch predictor. It uses perceptrons to
capture various features and perspectives of the branch
history. Training a structure such as the Multiperspec-
tive Perceptron, involves more extensive calculations and
adjustments of weights. This process is more time-
consuming compared to traditional table-based predic-
tors like TAGE. Additionally, the Multiperspective Per-
ceptron requires more training data and iterations to con-
verge to an accurate prediction model, which contributes
to a longer training time.[6]

As a way to counter the downside of a huge training
time, the MPP TAGE branch predictor was introduced,
and it predicts better, as evident from Fig. 2. But the
tradeoff is that it is more vulnerable to Spectre, as evi-
dent from Fig. 3.

We can also explain the trends in the other branch pre-
dictors using their structure and prediction mechanisms.

Local branch predictors make predictions based on the
local history of a single branch instruction, typically us-
ing a small table for each instruction. The training of
local predictors involves updating these local history ta-
bles when the branch outcome is known. Since the tables
are small and specific to each branch instruction, train-
ing can be done quickly, but not as quickly as TAGE due
to lack of parallelism.[11]

Bimodal branch predictors use a two-bit saturating
counter to make predictions based on the overall behav-
ior of branch instructions. Training the bimodal predic-
tor involves updating this single table when branch out-
comes are known, which is a straightforward process and
can be done quickly, but again not as quickly as TAGE
due to lack of parallelism.[12]

Tournament predictors combine multiple branch pre-
dictors, such as local and global predictors, to select the
most accurate prediction for a given branch instruction.
Training a tournament predictor involves training its in-
dividual components (e.g., local and global predictors)
and adjusting the selection mechanism. While the train-
ing process for tournament predictors is more involved
than simple local or bimodal predictors, it is typically
faster and less complex than training the Multiperspec-

TABLE III. Success Rate of Budget Bits of the Multiperspec-
tive Perceptron TAGE BP - 64 kB TAGE, LP and SC

Number of Budget Bits % of Secret String Revealed
67584 45%
526336 57.50%
1048576 50%
2097152 45%
4194304 47.50%
8388608 47.50%

tive Perceptron, and still slower than TAGE due to lack
of parallelism.[11]
It seems like the easier the branch predictor can be

trained to predict in a certain direction

D. Impact of BP State Space

From our observations, we notice that increasing the
state space of the branch predictor could help mitigate
the Spectre attack.
We already notice this trend with the TAGE SC L BP

and the Multiperspective Perceptron BP, where increas-
ing the size of the branch predictor from 8 kB to 64
kB helps mitigate the Spectre attack by revealing less
of the secret string, from 72.50% to 45% and from 100%
to 42.50% respectively.
This observation makes sense. A larger branch predic-

tor can store and manage more information about pro-
gram control flow, including speculative execution paths.
With a larger predictor, the processor can make more ac-
curate predictions about which branches to take, which
means it can speculatively execute code more effectively.
This makes it more challenging for an attacker to in-
fluence the speculative execution to leak sensitive data.
Since a larger branch predictor has more ”states” to work
with, it becomes difficult to train the branch predictor to
just pick one direction and then mispredict. Therefore,
within the limited iterations of the Spectre code, it is
difficult to train a larger state space than a smaller one,
which is why larger branch predictors reveal less of the
secret string.
An outlier in this data seems to be the Multiperspec-

tive Perceptron TAGE BP, where increasing the size re-
veals 1 more character of the secret string, but a theory
as to why that happens could be the difference in the im-
plementation of the TAGE and the statistical corrector
that is used in both variants of the branch predictor.
To confirm our hypotheses, we took the Multiperspec-

tive Perceptron TAGE BP with the 64 kB implementa-
tion of the loop predictor and the statistical corrector and
changed the number of budget bits, effectively changing
the size of the BP. We found that increasing the size still
mitigates against Spectre, and these findings are summa-
rized in Table III.
While increasing the state space does not guarantee

mitigation of Spectre, it can still be considered as a po-



8

FIG. 4. Seconds taken to complete a base Spectre attack per branch predictor type in gem5.

tential mitigation strategy, albeit not as strong as other
approaches. Expanding the state space potentially in-
creases the difficulty for attackers to manipulate the
branch predictor and execute Spectre attacks. However,
the effectiveness of this approach is not consistent and
requires further research and validation. Ultimately, a
combination of mitigation strategies, including increas-
ing the state space alongside other techniques, is likely
necessary for comprehensive protection against Spectre.

E. Impact of Training Period of Branch Predictor

Since Spectre is based on training the branch predic-
tor to predict in a certain direction, we also wanted to
see if increasing the training period could reveal more of
the secret string. So, we reran the configurations with
a version of the Spectre binary that trains the branch
predictor for twice the number of iterations, i.e., 2000.

gem5’s MinorCPU still did not reveal any part of the
secret string for any branch predictor. Even with an ex-
tended training period, the MinorCPU configuration did
not exhibit any susceptibility to Spectre attacks, which
strengthens the claim that the nature of the processor
itself makes it more resistant to Spectre.

Regarding the O3CPU, we observed an increase in the
percentage of characters revealed in the secret string.

TABLE IV. Success Rate of Branch Predictors in the O3CPU
with Training Period of 2000 iterations

Branch Predictor % of Secret String Revealed
TAGE BP 100%
Tournament BP 100%
Local BP 100%
BiMode BP 100%
LTAGE BP 100%
TAGE SC L BP (8 kB) 100%
TAGE SC L BP (64 kB) 100%
Multiperspective Percep-
tron BP (8 kB)

100%

Multiperspective Percep-
tron BP (64 kB)

85%

Multiperspective Percep-
tron TAGE BP (8 kB)

100%

Multiperspective Percep-
tron TAGE BP (64 kB)

100%

Our findings are summarized in Table IV.

Remarkably, the O3CPU configuration exhibited an
increase in the percentage of characters revealed in the
secret string, indicating that a more extended training
period positively influenced the success of the Spectre
attack. Notably, the success rates were 100% across var-
ious branch predictors.

This finding aligns with the overarching statement that
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“any branch predictor can be trained to predict in a spe-
cific direction”.

In cases where the Spectre attack succeeded completely
with 1000 iterations, it takes much shorter with 2000
iterations. This is because a longer training period of the
branch predictor implies that it is surer of the direction
to predict. the extended training may have introduced
more consistent or reliable predictions. The additional
training data also has reinforced the existing prediction
patterns, making the speculative execution more efficient
and reducing the time required for the Spectre attack to
successfully leak sensitive information.

In cases where the Spectre attack did not succeed com-
pletely with 1000 iterations, it also takes much shorter
with 2000 iterations, since we are training the branch
predictor more effectively. The increased number of it-
erations enhances the training of the branch predictor,
allowing the attacker to more effectively manipulate spec-
ulative execution and extract targeted information. This
shorter timeframe for success in the extended iteration
scenario is attributed to the refined training of the branch
predictor.

An outlier in these trends is the Tournament branch
predictor, which takes longer with 2000 iterations, even
though it reveals the entire secret string in both, and the
Multiperspective Perceptron 64kB, which reveals a little
bit more of the secret string with 2000 iterations, but still
does not reveal it entirely.

The reason for these outliers is that the tournament
predictor has a more complex training mechanism. This
branch predictor combines multiple branch predictors,
such as local and global predictors, to select the most
accurate prediction for a given branch instruction, in
a tournament format. So, every iteration takes a fixed
amount of time to train the branch predictor. This is
why more iterations take longer.

Similarly, for the Multiperspective Perceptron, since
every prediction considers a lot of factors, the extended
training may introduce more nuanced patterns, mak-
ing the prediction process more complex and time-
consuming. The Multiperspective Perceptron likely re-
quires additional iterations to refine its understanding of
the branch behavior and the relationships between the
different factors it considers in a prediction. Since read-
ing the data from the cache in an unsuccessful attempt
also takes longer than a successful attempt, both these
delays add up to make this branch predictor have a longer
delay.

Overall, our results imply that every branch predictor
can be trained to predict in a certain direction, and is
susceptible to a Spectre attack. An attacker, with a suf-
ficiently long number of training iterations, can exploit
the branch predictor to reveal secret information.

VI. A SECURE BRANCH PREDICTOR

With a large enough training period, Spectre would be
able to reveal details from memory no matter the branch
predictor. The goal of the branch predictor in this case is
to extend the time it takes for training and try to mitigate
biased branches as much as possible so that fewer details
of the memory are leaked out.
Given the above analysis, we tried to ask the ques-

tion: What would the characteristics of the most Spectre-
resistant branch predictor look like?
We conclude it would have the following features:

• A statistical corrector and a loop predictor to make
sure that the branch predictor cannot be trained to
predict in one direction very quickly.

• A larger state space, meaning that it has a larger
history table of branches’ results.

• Perceptrons to capture various features and per-
spectives of the branch history. Training a struc-
ture like this involves more extensive calculations
and adjustments of weights, which is more holistic
than a traditional table-based system.

VII. CONCLUSION

Our investigation into Spectre attacks on x86 pro-
cessors has shed light on critical insights, revealing the
vulnerabilities and potential mitigations within diverse
branch predictors. Through our research, we confirmed
the effectiveness of statistical correctors and loop predic-
tors in reducing Spectre’s impact. Also, we found that
rapidly trained branch predictors were found to be more
susceptible. This analysis led to the exploration of a
Spectre-resistant branch predictor, which we character-
ize to be one with a statistical corrector, loop predictor,
larger state space, and perceptrons. These features ad-
vocate for a holistic training approach, serving not only
to extend the training period but also to reduce swift, bi-
ased directional predictions, thereby mitigating Spectre.
With speculative execution attacks like Spectre posing
an ongoing threat, our research efforts remain crucial in
fortifying processors against these sophisticated threats.
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